UKIEPC 2020

Summary and solution outlines

Problem Solutions

Note: Many problems this year are shared with BAPC (https://2020.bapc.eu/)

Overview

- We need to line some piranhas up for a group photo.

Aquarium

- Putting a finger in the tank causes adjacent piranhas to start swimming toward the finger.
- Find the number of seconds of finger exposure needed to put every fish in its ?? correct • solved at: ??:?? by
??
University of ??

Author: Freek Henstra

Aquarium - Solution

Techniques

- Intervals
- Greedy algorithms
- Amortisation

Algorithm

- Each fish needs to move by X_{i} places.
- The number of finger placements to the right must be \mathbf{X}_{i} more than the number to the left.
- Assume the number of placements to the left of the leftmost fish is $-\mathrm{X}_{0}$.
- Then the next number must be $\mathbf{0}$, the next after that must be $0+X_{1}$, then $0+X_{1}+X_{2}$, etcetera.
- We need all values to be non-negative. Take the minimum of value and subtract it from everything.
- Now we need to check if this number of placements is feasible
- The answer is guaranteed to be at most $\mathrm{O}\left(\mathrm{N} * \mathrm{~K}^{2}\right)$.
- So we can just go from left to right making all valid moves.

Overview

- Write a number $<10^{\wedge} 18$ as sum of ≤ 10 palindromic numbers.

Bidirectional

?? correct • solved at: ??:?? by ?? ??

Authors:
Ludo Pulles, Mike de Vries

Bidirectional Code - Solution

Techniques

- Greedy
- Recursion
- Stubbornness

Algorithm

- Idea: construct the biggest balanced number less than n greedily.
- Example:
- $n=970894988875162603$
- p[1] = 970894987789498079
- $n-p[1]=000000001085664524$
- $p[2]=000000001085555801$
- $\quad n-p[1]-p[2]=000000000000108723$
- Possible edge case: $\mathrm{n}=10$ ` $\mathrm{p}=\mathrm{n}-1$.
- To get $\mathrm{k} \leq 5$: run a brute force to express n as sum of three balanced numbers when $\mathrm{n} \leq 200000$.

Corrupted Judge
?? correct • solved at: ??:?? by ??
??

- Reconstruct a missing part of a contest scoreboard from other known parts.

Author: Boas Kluiving

Corrupted Judge- Solution

Techniques

- Logic
- Implementation
- Zalgo

Algorithm

- Starting at the last team fill in the corrupted column conservatively. The last team solved $\mathrm{p}[\mathrm{n}]=1$ problem.
- For $i=n-1, \ldots, 1 p[i]=p[i+1]+(1$ if $t[i]<=t[i+1]$ else 0$)$
- If $\mathrm{p}[1]=\mathrm{p}$, then the scoreboard is non-ambiguous.
- Else p[1] = p gives another correct scoreboard (ambiguous)
- Some special cases to deal with
- If no team has solved any problem, it is not ambiguous.

Overview

- Three professionals (one not pictured) are going to earn some money from individual events
Can they distribute the money equally?
?? correct • solved at: ??:?? by ?? ??

Author: Robin Lee

Divvying Up - Solution

Techniques

- Integers

Algorithm

- We just need to know if the total is divisible by 3. So start by computing the total as the sum of the input array.
- In python, sum(map(int, input().split())) does the job.
- Use your language's modulus operator (usually "\%") to calculate the remainder from division.

Overview

- Build the least number of elevators so that all buildings become accessible.

Elevator Pitch

?? correct • solved at: ??:?? by ?? ??

Author:
Mees de Vries

- We need to count local maxima in the floor plan, but only once each.

Elevator Pitch - Solution

Techniques

- Breadth-first search
- Implicit graphs

Algorithm

- Sort all of the locations in the grid by (descending) height
- Go through all of the locations in this order:
- If the location is already visited, skip it.
- Otherwise, run a flood fill (BFS) from that location to all lower/equal locations, and mark them as visited.
- Output the total number of flood fills needed

Overview

- A number of people are travelling to the same place along shortest paths, and we can buddy some of them up with a group ticket.

Family Fares

?? correct • solved at: ??:?? by
??
??

Author: Boas Kluiving

Family Fares - Solution

Techniques

- Dijkstra
- Memoisation
- Bitmasks

Algorithm

- We need to precompute a lot of shortest paths to the idyllic village (which is where the group ticket will always end up).
- For every family member mark all stations which are on shortest paths from their starting point to the idyllic village.
- Optimise for higher numbers of people by using a bitset and ORing it with shortest-path neighbours.
- Iterate over all stations and compute the savings when using that station to buy the group ticket.

Generators

? correct • solved at: ??:?? by
??
??

Author: Timon Knigge

Overview

- Install some power plants onto an island where everybody "lives on the edge" of a giant weighted cycle.
- To do this, pick some edges and vertices such that each vertex is connected to a marked vertex via a direct or indirect path.

Generators - Solution

Techniques

- Spanning Trees

Algorithm

- Transform it into a "minimum spanning tree" problem where every node has to be connected to a virtual "power" node.
- We'll put this power node at the centre and connect it to everything else with a weight according to the cost of installing a power station there.
- Prim's or Kruskal's algorithms can do the rest.

Overview

- Solve an annoyance by picking a list of food items from a list of set menus at random.
?? correct • solved at: ??:?? by ??
??

Authors:

Pim Spelier, Mike de Vries, Ragnar Groot Koerkamp, Robin Lee

Haughty Cuisine - Solution

Techniques

- Implementation

Algorithm

- Read in the size of the first menu, and immediately print it back out again.

Overview

- Sort an array by sorting half of it three times.

Incomplete Sort

?? correct • solved at: ??:?? by ?? ??

Author: Jorke de Vlas

Incomplete Sort - Solution

Techniques

- Divide and conquer
- Permutations

Algorithm

- Idea:
- In the first step, sort the first quarter.
- In the second step, sort the second quarter.
- In the final step, sort the remaining numbers.
- To accomplish this:
- First step: Choose the first $\mathrm{n} / 4$ numbers and the positions of the first $\mathrm{n} / 4$ numbers, so that the first $\mathrm{n} / 4$ numbers are forced into the first quarter.
- Second step: Choose the next n/4 numbers and positions, for the same reason.
- Third step: Just sort everything else (n/2)

Jigsaw
?? correct • solved at: ??:?? by
??
??

Overview

- Determine whether a jigsaw puzzle is solvable from the numbers of each kind of piece.

Author: Mike de Vries

Jigsaw - Solution

Techniques

- Ad Hoc

Algorithm

- A jigsaw puzzle of size w • h contains:
- 4 corner pieces
- $2(h-2)+2(w-2)$ edge pieces
- $(h-2)(w-2)$ center pieces
- This reduces the problem to a simple system of equations.

Kleptocrat

? correct • solved at: ??:?? by ??

Author: Jorke de Vlas

Overview

- Given a connected undirected graph, find a path from A to N that minimizes XOR of the values on the edges.

Kleptocrat - Solution

Techniques

- Linear Algebra
- Cycles

Algorithm

- Observation: walking back and forth does not change the $X O R$-value since $x \oplus x=0$.
- When there is a cycle starting from c with XOR-value v, we may walk from a to c, around the cycle, back to a and then to b giving a value of $w \oplus v$ where w was the value of a path from a to b.
- This is an equation over \mathbb\{F\}_2 and the v_i can be reduced with Gaussian Elimination giving 64 values.

Kleptocrat - Solution (cont.)

Techniques

- Linear Algebra
- Cycles

Algorithm

- See v_i as vectors in F_2^64 by writing v_i in base 2.
- The linear combinations form a subspace of dimension at most 64: find a basis, which has at most 64 elements.
- Now, given an initial path w, for i from 63 to 0 , look if w has a 1 in the ith binary digit and check if there is a basis element with i as most significant digit, in which XOR w with this value.

Overview

- Two map fragments (strings) are badly damaged and some items are replaced by "?"s

Lost Map

?? correct • solved at: ??:?? by ?? ??

Author: Robin Lee

Lost Map - Solution

Techniques

- FFT
- Convolution

Algorithm

- We can treat the "?" and non-"?" values completely separately.
- We make two separate binary strings
- One encoding "?" as 0 values and everything else as 1 values
■ One encoding "?" as several -1s and everything else as its binary representation (takes LogK bits where K is the number of directions)
- If we reverse one array, then the convolution of both versions of the binary strings from each map can be used to find the number of bits matching each time
- We need the number of bits across both convolutions to exactly equal the length of the string.
- Pitfalls: FFT needs to be fast.

Overview

- Print the median value at the same index of three different arrays.

Moderate Pace

?? correct • solved at: ??:?? by ??
??

Author: Bergur Snorrason

Moderate Pace - Solution

Techniques

- Sorting
- Implementation

Algorithm

- Read in the three arrays and iterate from $\mathrm{i}=0$ to $\mathrm{i}=\mathrm{n}-1$
- Create a new list L with the three items at index i and sort it
- Print L[1], and move onto the next.

Questions?

Or comments?

Final Standir
http://domjudge.bath.ac.uk/
nttn://aonniudae.bath.ac.uk/

\qquad
.
ntt:/ aoniuace.bath.ac.uk/
(T)

