UKIEPC 2020

Summary and solution outlines

Problem Solutions

Note: Many problems this year are shared with BAPC (https://2020.bapc.eu/)

Aquarium

Author: Freek Henstra

Overview

- We need to line some piranhas up for a group photo.
- Putting a finger in the tank causes adjacent piranhas to start swimming toward the finger.
- Find the number of seconds of finger exposure needed to put every fish in its specified place.

Aquarium - Solution

Techniques

- Intervals
- Greedy algorithms
- Amortisation

- Each fish needs to move by X_i places.
 - \circ The number of finger placements to the right must be ${\bf X_i}$ more than the number to the left.
- Assume the number of placements to the left of the leftmost fish is -X₀.
 - Then the next number must be 0, the next after that must be 0+X₁ then 0+X₁+X₂ etcetera.
 - We need all values to be non-negative. Take the minimum of value and subtract it from everything.
- Now we need to check if this number of placements is feasible
 - The answer is guaranteed to be at most $O(N^*K^2)$.
 - So we can just go from left to right making all valid moves.

Bidirectional

Authors: Ludo Pulles, Mike de Vries

Overview

 Write a number < 10^18 as sum of ≤ 10 palindromic numbers.

Bidirectional Code - Solution

Techniques

- Greedy
- Recursion
- Stubbornness

- Idea: construct the biggest balanced number less than n greedily.
- Example:
 - n = 970 894 988 875 162 603
 - \circ p[1] = 970 894 987 789 498 079
 - n p[1] = 000 000 001 085 664 524
 - p[2] = 000 000 001 085 555 801
 - n p[1] p[2] = 000 000 000 000 108 723
- Possible edge case: n = 10 ` : p = n 1.
- To get $k \le 5$: run a brute force to express n as sum of three balanced numbers when $n \le 200\ 000$.

Corrupted Judge

Author: Boas Kluiving

 Reconstruct a missing part of a contest scoreboard from other known parts.

Corrupted Judge- Solution

Techniques

- Logic
- Implementation
- Zalgo

- Starting at the last team fill in the corrupted column conservatively. The last team solved p[n]=1 problem.
 - For i=n-1,...,1 p[i] = p[i+1] + (1 if t[i] <= t[i+1] else 0)
 - \circ If p[1] = p, then the scoreboard is non-ambiguous.
 - Else p[1] = p gives another correct scoreboard (ambiguous)
- Some special cases to deal with
 - If no team has solved any problem, it is not ambiguous.

Author: Robin Lee

Overview

- Three professionals (one not pictured) are going to earn some money from individual events
- Can they distribute the money equally?

Divvying Up - Solution

Techniques

Algorithm

• Integers

- We just need to know if the total is divisible by 3. So start by computing the total as the sum of the input array.
 - In python, sum(map(int, input().split())) does the job.
- Use your language's modulus operator (usually "%") to calculate the remainder from division.

Elevator Pitch

Author: Mees de Vries

Overview

- Build the least number of elevators so that all buildings become accessible.
- We need to count local maxima in the floor plan, but only once each.

Elevator Pitch - Solution

Techniques

- Breadth-first search
- Implicit graphs

- Sort all of the locations in the grid by (descending) height
- Go through all of the locations in this order:
 - If the location is already visited, skip it.
 - Otherwise, run a flood fill (BFS) from that location to all lower/equal locations, and mark them as visited.
- Output the total number of flood fills needed

Family Fares

Author: Boas Kluiving

Overview

- A number of people are travelling to the same place along shortest paths, and we can buddy some of them up with a group ticket.
- Group tickets cost a fixed amount per person and must be taken together.
- Which group ticket starting point should we choose (if we choose one at all)?

Family Fares - Solution

Techniques

- Dijkstra
- Memoisation
- Bitmasks

- We need to precompute a lot of shortest paths to the idyllic village (which is where the group ticket will always end up).
- For every family member mark all stations which are on shortest paths from their starting point to the idyllic village.
 - Optimise for higher numbers of people by using a bitset and ORing it with shortest-path neighbours.
- Iterate over all stations and compute the savings when using that station to buy the group ticket.

Generators

? correct • solved at: ??:?? by ?? ??

Author: Timon Knigge

Overview

- Install some power plants onto an island where everybody "lives on the edge" of a giant weighted cycle.
- To do this, pick some edges and vertices such that each vertex is connected to a marked vertex via a direct or indirect path.

Generators - Solution

Techniques

Algorithm

• Spanning Trees

- Transform it into a "minimum spanning tree" problem where every node has to be connected to a virtual "power" node.
- We'll put this power node at the centre and connect it to everything else with a weight according to the cost of installing a power station there.
- Prim's or Kruskal's algorithms can do the rest.

Haughty Cuisine

Authors: Pim Spelier, Mike de Vries, Ragnar Groot Koerkamp, Robin Lee

Overview

• Solve an annoyance by picking a list of food items from a list of set menus at random.

Haughty Cuisine - Solution

Techniques

Algorithm

• Implementation

• Read in the size of the first menu, and immediately print it back out again.

Incomplete Sort

Author: Jorke de Vlas

Overview

• Sort an array by sorting half of it three times.

Incomplete Sort - Solution

Techniques

- Divide and conquer
- Permutations

- Idea:
 - In the first step, sort the first quarter.
 - In the second step, sort the second quarter.
 - In the final step, sort the remaining numbers.
- To accomplish this:
 - First step: Choose the first n/4 numbers and the positions of the first n/4 numbers, so that the first n/4 numbers are forced into the first quarter.
 - Second step: Choose the next n/4 numbers and positions, for the same reason.
 - Third step: Just sort everything else (n/2)

Jigsaw

Author: Mike de Vries

Overview

• Determine whether a jigsaw puzzle is solvable from the numbers of each kind of piece.

Jigsaw - Solution

Techniques

Algorithm

• Ad Hoc

- A jigsaw puzzle of size w · h contains:
 - 4 corner pieces
 - \circ 2(h 2) + 2(w 2) edge pieces
 - \circ (h 2)(w 2) center pieces
- This reduces the problem to a simple system of equations.

Kleptocrat

? correct • solved at: ??:?? by ?? ??

Author: Jorke de Vlas

Overview

 Given a connected undirected graph, find a path from A to N that minimizes XOR of the values on the edges.

Kleptocrat - Solution

Techniques

- Linear Algebra
- Cycles

- Observation: walking back and forth does not change the XOR-value since x ⊕ x = 0.
- This is an equation over \mathbb{F}_2 and the v_i can be reduced with Gaussian Elimination giving 64 values.

Kleptocrat - Solution (cont.)

Techniques

- Linear Algebra
- Cycles

- See v_i as vectors in F_2^64 by writing v_i in base 2.
- The linear combinations form a subspace of dimension at most 64: find a basis, which has at most 64 elements.
- Now, given an initial path w, for i from 63 to 0, look if w has a 1 in the ith binary digit and check if there is a basis element with i as most significant digit, in which XOR w with this value.

Lost Map

Author: Robin Lee

Overview

- Two map fragments (strings) are badly damaged and some items are replaced by "?"s
- Find how many ways you can overlay the two fragments so that no non-"?" values conflict.

Lost Map - Solution

Techniques

- FFT
- Convolution

- We can treat the "?" and non-"?" values completely separately.
 - We make two separate binary strings
 - One encoding "?" as 0 values and everything else as 1 values
 - One encoding "?" as several -1s and everything else as its binary representation (takes LogK bits where K is the number of directions)
 - If we reverse one array, then the convolution of both versions of the binary strings from each map can be used to find the number of bits matching each time
 - We need the number of bits across both convolutions to exactly equal the length of the string.
- Pitfalls: FFT needs to be **fast**.

Moderate Pace

Author: Bergur Snorrason

Overview

• Print the median value at the same index of three different arrays.

Moderate Pace - Solution

Techniques

- Sorting
- Implementation

- Read in the three arrays and iterate from i=0 to i=n-1
 - Create a new list L with the three items at index i and sort it
 - Print L[1], and move onto the next.

Questions?

Or comments?

Final Standings

http://domjudge.bath.ac.uk/